A calmodulin-binding site on cyclin E mediates Ca2+-sensitive G1/s transitions in vascular smooth muscle cells.
نویسندگان
چکیده
Calcium transients are known to control several transition points in the eukaryotic cell cycle. For example, we have previously shown that a coordinate elevation in the intracellular free calcium ion concentration is required for G1- to S-phase cell cycle progression in vascular smooth muscle cells (VSMC). However, the molecular basis for this Ca2+ sensitivity was not known. Using buffers with differing [Ca2+], we found that the kinase activity of mouse and human cyclin E/CDK2, but not other G1/S-associated cell cycle complexes, was responsive to physiological changes in [Ca2+]. We next determined that this Ca2+-responsive kinase activity was dependent on a direct interaction between calmodulin (CaM), one of the major Ca2+-signal transducers of eukaryotic cells, and cyclin E. Pharmacological inhibition of CaM abrogated the Ca2+ sensitivity of cyclin E/CDK2 and retarded mouse VSMC proliferation by causing G1 arrest. We next defined the presence of a highly conserved 22 amino acid N-terminal CaM-binding motif in mammalian cyclin E genes (dissociation constant, 1.5+/-0.1 micromol/L) and showed its essential role in mediating Ca2+-sensitive kinase activity of cyclin E/CDK2. Mutant human cyclin E protein, lacking this CaM-binding motif, was incapable of binding CaM or responding to [Ca2+]. Taken together, these findings reveal CaM-dependent cyclin E/CDK2 activity as a mediator of the known Ca2+ sensitivity of the G1/S transition of VSMC.
منابع مشابه
A Calmodulin-Binding Site on Cyclin E Mediates Ca -Sensitive G1/S Transitions in Vascular Smooth Muscle Cells
Calcium transients are known to control several transition points in the eukaryotic cell cycle. For example, we have previously shown that a coordinate elevation in the intracellular free calcium ion concentration is required for G1to S-phase cell cycle progression in vascular smooth muscle cells (VSMC). However, the molecular basis for this Ca sensitivity was not known. Using buffers with diff...
متن کاملPeptide-mediated disruption of calmodulin-cyclin E interactions inhibits proliferation of vascular smooth muscle cells and neointima formation.
RATIONALE Cell cycle progression in vascular smooth muscle cells (VSMCs) is a therapeutic target for restenosis. OBJECTIVE Having discovered that calmodulin (CaM)-dependent cyclin E/CDK2 activity underlies Ca(2+)-sensitive G(1)-to-S phase transitions in VSMCs, we sought to explore the physiological importance of the CaM-cyclin E interaction. METHODS AND RESULTS A peptide based on the CaM bi...
متن کاملCalcineurin-independent regulation of plasma membrane Ca2+ ATPase-4 in the vascular smooth muscle cell cycle.
Calcineurin mediates repression of plasma membrane Ca2+-ATPase-4 (PMCA4) expression in neurons, whereas c-Myb is known to repress PMCA1 expression in vascular smooth muscle cells (VSMC). Here, we describe a novel mouse VSMC line (MOVAS) in which 45Ca efflux rates decreased 50%, fura 2-AM-based intracellular Ca2+ concentrations ([Ca2+]i) increased twofold, and real-time RT-PCR and Western blot r...
متن کاملc-Myb-dependent inositol 1,4,5-trisphosphate receptor type-1 expression in vascular smooth muscle cells.
OBJECTIVE The IP3 receptor-1 (IP3R1) mediates Ca2+ signals critical to vascular smooth muscle cell (VSMC) proliferation. The cell cycle-associated transcription factor c-Myb increases Ca2+ at the G1/S transition. Here we show the mechanism through which c-Myb regulates expression of IP3R1. METHODS & RESULTS Ribonuclease protection confirmed transcriptional start (TS), and qRT-PCR revealed a 6...
متن کاملThe mechanism of Ca2+ regulation of vascular smooth muscle thin filaments by caldesmon and calmodulin.
The interactions of vascular smooth muscle caldesmon with actin, tropomyosin, and calmodulin were determined under conditions in which the four proteins can form reconstituted Ca2+-sensitive smooth muscle thin filaments. Caldesmon bound to actin in a complex fashion with high affinity sites (K = 10(7) M-1) saturating at a stoichiometry of 1 per 28 actins, and lower affinity sites at 1 per 7 act...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Circulation research
دوره 98 10 شماره
صفحات -
تاریخ انتشار 2006